Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 80: 153385, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33091854

RESUMO

BACKGROUND: Microglia-mediated neuroinflammation is one of the most prominent characteristics of multiple sclerosis (MS), a chronic demyelination disease. As one of the main active ingredients in Astragali radix, total flavonoids of Astragalus (TFA) has multiple pharmacological effects such as immunomodulation, anti-inflammation and and anti-tumor. However, little is known about whether TFA could inhibit microglia-mediated neuroinflammation in MS. PURPOSE: This study was aimed to elucidate whether TFA could inhibit microglia-mediated neuroinflammation in MS. STUDY DESIGN: In the present study, we explored the protective effect of TFA on experimental autoimmune encephalomyelitis (EAE), an animal model of MS, in mice for the first time, and discussed its mechanism from the aspect of anti-microglia-mediated neuroinflammation. METHODS: The mice received oral administration of TFA (25 and 50 mg/kg) daily from two days before immunization and continued until day 21 post-immunization. The effect of TFA on EAE in mice and its mechanism were investigated by ELISA, Western blot, real-time PCR, luciferase reporter assay, histopathology and immunohistochemistry. RESULTS: TFA were shown to alleviate the severity of EAE in mice. It inhibited the excessive activation of microglia both in spinal cords of EAE mice and in LPS-stimulated BV-2 cells, evidenced by weakening the production of inflammatory mediators such as NO, TNF-α, IL-6, and IL-1ß markedly at either protein or mRNA level. Further study demonstrated that TFA repressed the phosphorylation, nuclear translocation and transcriptional activity of NFκB, and inhibited the activation of AKT and JNK signaling in BV-2 cells induced by LPS. The agonists of AKT and JNK, anisomycin and SC79, could partly abolish the inhibitory effect of TFA on the production of inflammatory mediators in BV-2 cells induced by LPS. CONCLUSIONS: Taken together, our results clarified that TFA inhibited microglia-mediated inflammation in EAE mice probably through deactivating JNK/AKT/NFκB signaling pathways. The novel findings may lay a theoretical foundation for the clinical application of TFA in the treatment of MS.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Astrágalo/química , Encefalomielite Autoimune Experimental/tratamento farmacológico , Flavonoides/farmacologia , Microglia/efeitos dos fármacos , Animais , Linhagem Celular , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Flavonoides/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
2.
Life Sci ; 249: 117448, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32087232

RESUMO

AIMS: Dendritic cells (DCs) actively participate in the pathogenesis of multiple sclerosis (MS), an autoimmune disease. Astragaloside IV (ASI), an active monomer isolated from the Chinese medicine Astragalus membranaceus, has a wide range of pharmacological effects. We aimed to elucidate the effects of ASI on the development of DCs in the early stage of MS/EAE. MAIN METHODS: The mice were administered with ASI (20 mg/kg) daily 3 days in advance of EAE induction and continuously until day 7 post-immunization. The effect of ASI on CD11c+ DC cells from bone marrow (BMDCs) or the spleen of EAE mice at day 7 post-immunization were investigated respectively by flow cytometry, ELISA, western blot, real-time PCR and immunofluorescence. KEY FINDINGS: ASI administration in the early stage of EAE was demonstrated to delay the onset and alleviate the severity of the disease. ASI inhibited the maturation and the antigen presentation of DCs in spleen of EAE mice and LPS-stimulated BMDCs, as evidenced by decreased expressions of CD11c, CD86, CD40 and MHC II. Accordingly, DCs treated by ASI secreted less IL-6 and IL-12, and prevented the differentiation of CD4+ T cells into Th1 and Th17 cells, which was probably through inhibiting the activation of NFκB and MAPKs signaling pathways. SIGNIFICANCE: Our results implicated the alleviative effect of early ASI administration on EAE might be mediated by suppressing the maturation and function of DCs. The novel findings may add to our knowledge of ASI in the potentially clinical treatment of MS.


Assuntos
Células Dendríticas/efeitos dos fármacos , Encefalomielite Autoimune Experimental/prevenção & controle , Saponinas/administração & dosagem , Triterpenos/administração & dosagem , Animais , Técnicas de Cocultura , Citocinas/biossíntese , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Saponinas/farmacologia , Índice de Gravidade de Doença , Triterpenos/farmacologia
3.
Br J Pharmacol ; 176(9): 1282-1297, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30767208

RESUMO

BACKGROUND AND PURPOSE: Sleep deprivation compromises learning and memory in both humans and animals, and can be reversed by administration of modafinil, a drug promoting wakefulness. Dysfunctional autophagy increases activation of apoptotic cascades, ultimately leading to increased neuronal death, which can be alleviated by autophagy inhibitors. This study aimed to investigate the alleviative effect and mechanism of modafinil on the excessive autophagy occurring in the hippocampus of mice with deficiency of learning and memory induced by sleep deprivation. EXPERIMENTAL APPROACH: The Morris water maze was used to assess the effects of modafinil on male C57BL/6Slac mice after 48-hr sleep deprivation. The HT-22 hippocampal neuronal cell line was also used. Nissl staining, transmission electron microscope, immunofluorescence, Western blot, transient transfection, and autophagy inducer were used to study the effect and mechanism of modafinil on hippocampal neurons with excessive autophagy and apoptosis. KEY RESULTS: Modafinil improved learning and memory in sleep-deprived mice, associated with the inhibition of excessive autophage and apoptosis and an enhanced activation of the PI3K/Akt/mTOR/P70S6K signalling pathway in hippocampal neurons. These effects of modafinil were abolished by rapamycin. In addition, modafinil suppressed the aberrant autophagy and apoptosis induced by rapamycin and reactivated PI3K/Akt/mTOR/P70S6K signals in HT-22 cells. CONCLUSIONS AND IMPLICATIONS: These results suggested that modafinil alleviated impaired learning and memory of sleep-deprived mice potentially by suppressing excessive autophagy and apoptosis of hippocampal neurons. This novel mechanism may add to our knowledge of modafinil in the clinical treatment of impaired memory caused by sleep loss.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Hipocampo/efeitos dos fármacos , Modafinila/farmacologia , Neurônios/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Privação do Sono/tratamento farmacológico , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Toxicol Appl Pharmacol ; 362: 105-115, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385269

RESUMO

CD4+ T cells, especially T-helper (Th) cells (Th1, Th2 and Th17) and regulatory T cells (Treg) play pivotal role in the pathogenesis of multiple sclerosis (MS), a demyelinating autoimmune disease occurring in central nervous system (CNS). Astragaloside IV (ASI, CAS: 84687-43-4) is one of the saponins isolated from Astragalus membranceus, a traditional Chinese medicine with immunomodulatory effect. So far, whether ASI has curative effect on experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and how it affects the subsets of CD4+ T cells, as well as the underlying mechanism have not been clearly elucidated. In the present study, ASI was found to ameliorate the progression and hamper the recurrence of EAE effectively in the treatment regimens. It significantly reduced the demyelination and inflammatory infiltration of CNS in EAE mice by suppressing the percentage of Th1 and Th17 cells, which was closely associated with the inhibition of JAK/STAT and NF-κB signaling pathways. ASI also increased the percentage of Treg cells in spleen and CNS, which was accompanied by elevated Foxp3. However, in vitro experiments disclosed that ASI could regulate the differentiation of Th17 and Treg cells but not Th1 cells. In addition, it induced the apoptosis of MOG-stimulated CD4+ T cells probably through modulating STAT3/Bcl-2/Bax signaling pathways. Together, our findings suggested that ASI can modulate the differentiation of autoreactive CD4+ T cells and is a potential prodrug or drug for the treatment of MS and other similar autoimmune diseases.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Encefalomielite Autoimune Experimental/imunologia , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Janus Quinases/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fatores de Transcrição STAT/metabolismo
5.
Inflammation ; 40(6): 2137-2150, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28822019

RESUMO

Gypenoside IX (GP IX) is a pure compound isolated from Panax notoginseng. Gypenosides have been implicated to benefit the recovery of enormous neurological disorders. By suppressing the activation of astrocytes, gypenosides can improve the cognitive impairment. However, so far, little is known about whether GP IX could restrain the inflammatory responses in astrocytes or reactive astrogliosis. In present study, the anti-inflammatory effects of GP IX were investigated in reactive astrocytes induced by proinflammatory mediators both in vitro and in vivo. GP IX significantly reduced the production of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) at either protein or mRNA level in glial cell line C6 cells stimulated by lipopolysaccharide (LPS)/TNF-α combination. It also alleviated the astrogliosis and decreased the production of inflammatory mediators in brain cortex of LPS-treated mice. Further study disclosed that GP IX inhibited nuclear translocation of nuclear factor kappa B (NFκB) and reduced its transcriptional activity. Meanwhile, GP IX significantly attenuated the phosphorylation of NFκB, inhibitor of kappa B (IκB), Akt, and p38 mitogen-activated protein kinase (MAPK) under inflammatory conditions both in vitro and in vivo. These findings indicated that GP IX might suppress reactive astrogliosis by suppressing Akt/p38 MAPK/NFκB signaling pathways. And GP IX might be a promising drug candidate or prodrug for the therapy of neuroinflammatory disorders characterized with reactive astrogliosis.


Assuntos
Astrócitos/metabolismo , Inflamação/prevenção & controle , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Linhagem Celular , Gliose/prevenção & controle , Mediadores da Inflamação/metabolismo , Camundongos , NF-kappa B/metabolismo , Neuroglia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...